Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 208: 108519, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38490154

ABSTRACT

Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.


Subject(s)
Metals, Rare Earth , Nanostructures , Resilience, Psychological , Humans , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Plants/metabolism , Plant Development , Soil/chemistry
2.
Toxicol Rep ; 8: 1475-1479, 2021.
Article in English | MEDLINE | ID: mdl-34401357

ABSTRACT

It is possible to reveal the potential of water-insoluble drugs by increasing their solubility in water with some nanotechnology techniques. Nanosuspension technology can solve this problem by increasing the water solubility and as well as bioavailability of these drugs. The present work is pointed at the evaluation of nanosuspension of curcumin, a poorly water-soluble drug. The Curcumin nanoparticules (CNs) were prepared with ultrasonnication method using dichloromethane as solvent and water as antisolvent and characterized via spectroscopic methods (UV-vis and FT-IR) and Scanning Electron Microscopy (SEM). Curcumin nanoparticules Biofilms (CNs-BF) supported gelatin-collagen scaffold were prepared. Curcumin nanoparticles were obtained by nanosuspension technique. And then, to overcome the limited effects of curcumin such as solubility and bioavailability, nanoparticle films were prepared by incorporating it into the structure of biocompatible collagen-gelatin scaffolds. Curcumin is limited by some factors that limit its clinical applicability, such as low oral bioavailability, poor water solubility and rapid degradation. However, they can be applied clinically when they are included in the structure of biocompatible gelatin-collagen scaffolds.

3.
RSC Adv ; 11(60): 37684-37699, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498080

ABSTRACT

Application of N-heterocyclic carbene (NHC) palladium complexes has been successful for the modulation of C-C coupling reactions. For this purpose, a series of azolium salts (1a-f) including benzothiazolium, benzimidazolium, and imidazolium, bearing a CN-substituted benzyl moiety, and their (NHC)2PdBr2 (2a-c) and PEPPSI-type palladium (3b-f) complexes have been systematically prepared to catalyse acylative Suzuki-Miyaura coupling reaction of acyl chlorides with arylboronic acids to form benzophenone derivatives in the presence of potassium carbonate as a base and to catalyse the traditional Suzuki-Miyaura coupling reaction of bromobenzene with arylboronic acids to form biaryls. All the synthesized compounds were fully characterized by Fourier Transform Infrared (FTIR), and 1H and 13C NMR spectroscopies. X-ray diffraction studies on single crystals of 3c, 3e and 3f prove the square planar geometry. Scanning Electron Microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), metal mapping analyses and thermal gravimetric analysis (TGA) were performed to get further insights into the mechanism of the Suzuki-Miyaura cross coupling reactions. Mechanistic studies have revealed that the stability and coordination of the complexes by the CN group are achieved by the removal of pyridine from the complex in catalytic cycles. The presence of the CN group in the (NHC)Pd complexes significantly increased the catalytic activities for both reactions.

4.
Int J Artif Organs ; 39(10): 509-517, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27901554

ABSTRACT

PURPOSE: Bluefin Trevally (Caranx melampygus) fish is mainly used for fillet production, the bones of which are discarded as a major solid waste in the fish food processing industry. In the present study, novel collagen films were prepared using the bones of Bluefin Trevally (BT). The study investigates the potential of using this collagen film as a wound dressing material. METHODS: The prepared collagen films (CFs) were characterized for their physicochemical properties using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), tensile strength, elongation at break, etc. In vitro studies using human keratinocyte cell line (HaCaT) also proved the biocompatibility of CF. The CFs were used as wound dressing material on the experimental wounds of rats and the healing pattern was evaluated using planimetric and histopathological studies. RESULTS: CF prepared from the bones of BT possessed better mechanical properties. The in vitro studies demonstrated its biocompatible nature. Acceleration of wound healing in CF-treated rats was evident in the in vivo studies. CONCLUSIONS: The study has devised a process for using fish waste in the preparation of a value-added product like wound dressing material. The CF with the required strength, biocompatibility and wound healing properties may be tried as a wound dressing material in large animals after obtaining the necessary approval.


Subject(s)
Bandages , Bone and Bones/chemistry , Collagen/analysis , Fishes , Industrial Waste , Animals , Biocompatible Materials , Cell Line , Cell Survival , Food-Processing Industry , Humans , Keratinocytes/physiology , Rats, Wistar , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...